| Modulekode | WTW 750 |
| Kwalifikasie | Nagraads |
| Fakulteit | Fakulteit Natuur- en Landbouwetenskappe |
| Module-inhoud | *Hierdie inligting is slegs in Engels beskikbaar. Classical optimisation: Necessary and sufficient conditions for local minima. Equality constraints and Lagrange multipliers. Inequality constraints and the Kuhn-Tucker conditions. Application of saddle point theorems to the solutions of the dual problem. One-dimensional search techniques. Gradient methods for unconstrained optimisation. Quadratically terminating search algorithms. The conjugate gradient method. Fletcher-Reeves. Second order variable metric methods: DFP and BFCS. Boundary following and penalty function methods for constrained problems. Modern multiplier methods and sequential quadratic programming methods. Practical design optimisation project. |
| Modulekrediete | 15.00 |
| Programme | |
| Voorvereistes | Meervariant-Calculus op 2de-jaarsvlak; Lineêre Algebra op 2de-jaarsvlak |
| Kontaktyd | 2 lesings per week |
| Onderrigtaal | Module word in Engels aangebied |
| Departement | Wiskunde en Toegepaste Wiskunde |
| Aanbiedingstydperk | Semester 1 |
Copyright © University of Pretoria 2025. All rights reserved.
Get Social With Us
Download the UP Mobile App